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DEDICATED TOTHE MEMORYOFRAYMOND C.GRIMM 

We have developed an orbit-averaged Darwin quasi-neutral hybrid code to study the in situ 
acceleration of cosmic ray by supernova-remnant shock waves. The orbit-averaged algorithm 
is well suited to following the slow growth of Alfvtn waves driven by resonances with rapidly 
gyrating cosmic rays. We present a complete description of our algorithm, along with stability 
and noise analyses. The code is numerically unstable, but a single e-folding may require as 
many as lo5 time-steps! It can therefore bc used to study instabilities for which f,,,,,, > 
r nvmerica,, provided that murnticrl~sm’ c O(1). We also analyze a physical instability which 
provides a successful test of our algorithm. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

We have developed an orbit-averaged Darwin quasi-neutral hybrid code to study 
the in situ acceleration of cosmic ray ions by supernova-remnant shock waves. In 
current models of this acceleration [l-4], suprathermal particles gain energy as 
they bounce back and forth across the shock. Turbulence behind the shock 
provides the downstream scattering centers, while upstream, the particles which 
stream ahead of the shock generate resonant Alfvtn waves, and in turn are pitch- 
angle scattered by them. The low-temperature ions in the interstellar medium 
provide the inertia for the waves, with the energy for the instability coming from 
the streaming of the low-density relativistic cosmic rays. These models are attractive 
because they can account for the galactic cosmic ray energy density and because 
they naturally reproduce the observed shape of the cosmic ray energy spectrum. 

Despite its attractions, supernova-remnant acceleration has two serious 
problems. First, supernova remnants have a finite lifetime, so the cosmic ray spec- 
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trum will have a maximum energy. Recent work [S] suggests a firm upper limit of 
E max < 1015 eV, but observations show a smooth spectrum up to at least 10” eV. 
Second, near the shock front, the turbulent energy generated by the streaming par- 
ticles violates the quasi-linear assumption 6B/B + 1. The entire picture of pitch- 
angle scattering by resonant waves given by weak turbulence theory then needs 
substantial modification. 

Our code has been developed to study the region ahead of a supernova shock, 
where the mildly relativistic ions which make up the bulk of the galactic cosmic 
rays interact with AlfvCn wave turbulence. The cosmic rays and interstellar material 
have similar energy densities, but the interstellar ions are lo’-’ times as abundant. 
We therefore represent the electrons and ions in the interstellar medium by a set of 
one-dimensional single-fluid MHD equations, while the energetic cosmic ray ions 
are treated as kinetic particles. The cosmic ray current and density are included in 
the MHD equations as source terms. A nonrelativistic treatment of the MHD fluid 
accurately describes the interactions between the cosmic ray ions and the fluid 
because pitch angle scattering forces the bulk velocity of the cosmic rays to be close 
to the Alfven velocity. The MHD equations are solved explicitly with no penalty on 
the time-step to resolve the AlfvCn wave frequency. Furthermore, because the fre- 
quencies and growth rates of the Alfven waves are typically orders of magnitude 
smaller than the cyclotron frequency of the resonant cosmic rays, we have orbit- 
averaged [6] the cosmic ray source terms in the MHD equations. 

We outline our method of solution of the coupled MHD-particle equations 
(Sect. 2), present a linear stability analysis for our code, including both finite dx 
and finite AT terms (Sect. 3), discuss some practical considerations in implementing 
the code (Sect. 4), and give some examples. In previous work [7], an explicit 
predictor-corrector magneto-inductive code was shown to be stable at large time- 
step. We shall show that our algorithm is unstable at all time-steps, but with the 
proper choice of operating parameters, the numerical instability can require as 
many as lo6 time-steps for a single e-folding and does not interfere with the study of 
physical problems of interest. 

2. DESCRIPTION OF THE ALCXIRITHM 

Our physical system has three species: low temperature, high density interstellar 
electrons and ions; and mildly relativistic, low density cosmic ray ions. The 
interstellar material is represented by a set of one-dimensional, single fluid MHD 
equations, which is advanced on the macro-time scale AT. The particles are advan- 
ced on the much more rapid micro-time scale At (s AT/N). In Fig. 1, we show the 
sequence of operations for the relative advance of the fields and particles. With 
given fields, we advance the particle positions and velocities through N micro time- 
steps using the relativistic mover described in [8]. To advance the MHD equations 
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FIG. 1. The application of orbit-averaging to the time-advance of the field and particle equations. 
The particles are advanced on the short time scale At, during which the orbit-averaged sauce terms (Q) 
and (j) are accumulated. The fields are then advanced on the much longer time scale AT. For clarity, 
the fluid variables p, P, and a, which are advanced along with E and B, are omitted from the diagram. 

with particle source terms, we construct the orbit-averaged 
current as 

<Q> 
(0 

M+ (10) - /-!- f qnl+JAt, 

N+ 1 ,=o 

charge density and 

(1) 

(2) 

where n”* and v”’ are the grid-interpolated mean number density and velocity of 
the cosmic rays at time t = 1 At. 

With these definitions and the quasi-neutrality condition n, = ni+ ncr, where 
ncr E cosmic ray number density, we can write down a set of single-fluid MHD 
equations which represent the response of the fields and interstellar material to the 
cosmic rays. In the limit n&i $1, these equations are 

psjx + P"jux - 

= -(Q)crEj- ((j)crxB)j 
c (4) 

= -(j>,;E, (5) 
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where (j)cr and (Q)cr are the orbit averaged current and density, u is the bulk 
fluid velocity, P is the fluid pressure, and y is the adiabatic index. 

Each of these equations has the form 

where F is an arbitrary function of U, and S is independent of U. We use a modified 
Lax-Wendroff scheme, known as MacCormack’s method, to solve the coupled 
equations. Expicitly, we have 

MacCormack’s method is of second order in Ax and AT, and is subject to the usual 
Courant stability condition 

AT 
c--Q 1, 

Ax 

where c is a characteristic speed [IS]. We have added an artificial viscosity to 
prevent the possible formation of unresolved shocks. 

The time advance of the systems as a whole must be carefully constructed to 
make certain all quantities are known at the correct time level. Suppose that we 
know the MHD variables p, P, u, B, and E at time MAT, and that the particle 
velocities are at time MAT, with positions at time (MAT+ At/2). The orbit- 
averaged current and charge density are then at time (M- f) AT. 

Each advance to the next time level begins with a half-advance of the fluid to 
time (M + $) A T. The intermediate fields E M + (1/2), BM + (1/2) advance the particles a 
full macro time-step to MAT, and along the way, we accumulate the orbit-averaged 
current and density. Finally, these new orbit-averaged quantities are used to con- 
struct source terms at time (M+ 4) AT, and the fields are advanced a full time-step 
from MAT to (M+ 1) AT. In Fig. 2, we show the timing for the advance of the 
system as a whole. This scheme is second-order accurate in AT and requires that 
the particles be advanced only once from MA T to (A4 + 1) AT, rather than twice as 
in the predictor-corrector scheme described in [6 3. We speculate that the weak 
numerical instability present in our method may arise from this single advance of 
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FIG. 2. The details of the three stage time advance of the coupled MHD-particle equations. The 
(Q) and (j) at time level N- (l/2), along with p, B, II, P, and E at time level N are used to construct 
the temporary results p, f), ii, p, and f? at time level N + (l/2). The fields e and B advance the particles 
to time N+ 1. Finally, (Q) and (j) at time N+ (l/2) advance the MHD variables from time level N to 
N-k 1. 

the particles. In exchange for this instability, we gain a factor of 2 in speed, and a 
similar improvement in computer memory requirements. 

Our unconventional choice for the particle time levels, with the velocity known 
on the time-step, and the position on the half-time-step, was done to ensure that in 
the limit AT + At, (j ) and (Q ) go over to their nonorbit-averaged counterparts. 
We have taken similar care in the initialization of the particle positions and 
velocities. 

3. LINEAR STABILITY ANALYSIS 

The linear stability analysis breaks in a natural way into three parts. In the first 
part, we discuss the conditions on the stability of the fluid algorithm in the absence 
of particles. As expected for a simple advective scheme, MacCormack’s method is 
highly diffusive and dispersive. In the next part, we reanalyze the linear equations of 
motion derived in [7], and reduce Eqs. (9~(11) in [7] to a more tractable form 
involving rotation matrices which describe the orbit-averaging. Finally, we discuss 
the stability of the algorithm for fluid and particles presented above. 

The finite Ax, AT von Neumann stability analysis of Eqs. (3~(7) with no discrete 
particle source terms is straightforward. After some algebra, we find Re(w AT) and 
Im(w AT) to be 

+ (uA AT/Ax) sin(k Ax) 
1 - 2($, AT2/Ax2) sin2(k AX/~) ’ (10) 

2+vz,AT2 . 2 
dX2sm (k Ax) , (11) 

where 

- AlfvCn velocity. 
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FIG. 3. The real and imaginary parts of the solutions of the dispersion relation for MacCormack’s 
method. In both cases, we have used a Courant number of (l/2). 

We show Re(w LIT) and Im(o AT) as functions of k Ax in Fig. 3. This analysis 
shows MacCormack’s method to be stable if we satisfy the Courant condition 

A Taylor series expansion of the linearized MHD equations, as in Hirt’s stability 
analysis [lo], also shows MacCormack’s method is stable whenever the Courant 
condition is satisfied. 

We have extended the stability analysis of the orbit-averaging algorithm given in 
[7] by simplifying the matrix algebra involved in the particle rotation. The matrix 
operators in their Eqs. (9~(11) are replaced by a single set of rotation matrices. 
The angle of rotation will be shown to be a multiple of an angle which naturally 
occurs in the linearized v x B motion. We assume that cold, uniformly distributed 
particles are immersed in a uniform magnetic field B,. The particles are non- 
relativistic, and B. lies along the simulation axis, X. In assessing the stability of the 
longest wavelength modes it is sufkent to describe the particles in the limit 
k Ax -+ 0. The velocities at a time 1 At after the beginning of a macro-time interval 
are related to the initial velocities by 

(12) 

with 

0= 1 x 
( > -x 1 ’ 
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where x = Szi At/2, Qi= qBdmc, and 101 = det 8 = 1 +x2. The last equation was 
obtained by summing a geometric series. The matrix 

has the form of a rotation matrix, where the rotation angle is defined by 

8=tan-’ 2% 
( ) jq- 

We now define the symbol [ ; ] to represent a rotation matrix, with [ ; the 
diagonal elements and ; ] the off-diagonal element. The sign of ; ] corresponds to 
the sign of the lower left element. In this notation, 

Y = [COS 8; -sin e]. 

The p-fold application of \y is equivalent to a single rotation through an angle (p@ 
so that the equation for v’ now reduces to 

VI= [cos(lt?); -sin(l@]v” ++ [sin(#); -(l -cos(lO))] E”+li2. (13) 
0 

The orbit-averaged, linearized current is calculated similarly 

(i> 
M+ w - ’ 5 qnov’ 

N+ 1 ,=o 

0 q2 At noEM+“’ .-. 
lel m 

= [p; -Q]v”-; [Q; 1 -p] EM+(I/Z), (14a) 
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sin(SB) 
l-cos(SB)+- ) 

x ) 

Q=~(s~~(S~)-‘-~~(~“), (14b) 

S=N+l, 

and where v”’ is the velocity vector at time t = MAT. 
We can use Eq. (13) to relate vM + i to vM and E”+(“*) by taking I= NE AT/At. 

The complete system of coupled particle-fluid equations is then closed with 
Eqs. (3)-(7) and (14), which relate the perturbed fields and currents. As is obvious, 
there is considerable algebra involved in the analysis, but the use of rotation 
operators makes the derivation manageable. 

The resulting dispersion relation is a 5th order polynomial in z G exp( - iw AT), 
characterized by the parameter xcr = (n,&) * (sZi AT/2). In the limit ncr + 0 we 
analytically recover four modes, two of which are shear Alfvtn waves which obey 
the dispersion relation for MacCormack’s method. The other two modes are 
undamped cyclotron oscillations at frequency w = 8,. 

For finite ncr, two of the live modes are again shear Alfvtn waves, and two are 
cyclotron modes. The Alfven waves are stable until the Courant condition is 
violated, and one of the cyclotron modes is always neutrally stable. The other 
cyclotron mode is slightly unstable for all AT. The final mode is a heavily damped 

100 , I,,, , , ,,,I , I I,), / I,,,, 

K = 1.00 

O.l- 0.1 1 1000 

CliAT 

FIG. 4. The modulus of the amplification factor z =exp( -icu AT) as a function of 0, AT for the 
fundamental (k = 1) mode. In this example, n&= 3.6 x 10e5, uA = lo-*, Ax= n/16, and the orbit- 
averaging parameter N = 50. For R, AT< 20, all the roots appear to be marginally stable, but one of the 
cyclotron roots is slightly unstable with IzI - 1~ 10-5. When B, AT> 20, the Atfven waves are unstable 
because the Courant condition is iolated. The heavily damped numerical mode is not plotted, typically it 
has (21 < IO-‘. 
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numerical mode which arises from the coupling of the fluid and particle equations. 
In Fig. 4, we present the solution of the combined dispersion relation for a typical 
case. In this example, the growth rate for numerical instability was < lop5 AT-’ 
for Qi AT% 1 and proves to be no practical impediment to performing simulations. 
We again state that even though the code is formally unstable, we can still use it to 
study instabilities for which the growth rates r satisfy rphysical$ rnumerical, provided 
that 

r numericalT lina’ < O( 1). 

4. PRACTICAL CONSIDERATIONS 

In designing our code, we have paid particular attention to noise levels associated 
with discrete particle effects, and finite time step and Ax errors in the particle mover 
and field solver. Our physical growth rates are so small, f < o Q Bi, that any 
resonant instability may shut off well before saturation because of trapping in small 
amplitude noise fields [ 111. Orbit-averaging can help reduce the noise amplitude 
associated with discrete particles effects. On the other hand, orbit-averaging 
requires some reinterpretation of the usual constraint 52, ATQ 1 associated with 
most particle movers. As we shall show, the combination of small growth rates and 
orbit-averaging introduces several new constraint equations. 

The statistical averaging performed in an orbit-averaged code can offer a large 
gain in computational efficiency. Each simulation particle samples a large volume of 
phase space during each macro-time-step, and the noise level inherent in the code is 
correspondingly reduced. With the use of some simple statistical arguments, we can 
derive the expected noise level for an initially uncorrelated distribution function. 

If we make two reasonable assumptions, that n&z,+ 1, and that the cosmic ray 
distribution function can be written as f(u,,, u~)=~,,(v,,) fi(u,), then the fluc- 
tuation amplitude in mode Bk caused by discrete particle effects can be written as 
CR 131, 

I&J2 1 <v:>:!’ -= 
Bi 4N,, AT/At v, (15) 

We have used NC, as the total number of cosmic rays in the simulation, (u$ ) = 
~f&.M~~I~ and D,lkUA is the imaginary part of the cosmic ray contribution to 
the dispersion tensor evaluated at o = ku,. If f,,(q) is symmetric, we can simplify 
the above expression to 

(16) 

at least for the first few modes of the simulation. Test runs with an initially noisy 
distribution have verified this result to within a factor of three. 
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As we discussed above, an initially large noise level in the fields will trap the par- 
ticles and prevent the development of an instability. We would expect this situation 
to occur when the trapping frequency is of the order of the growth rate K From 
[14], the trapping frequency in an AlfvCn wave is 

W trap = (ku,QJ”* 2 l’*, 

0 0 
(17) 

where 25 is the amplitude of the noise field. If the trapping frequency in the noise 
field is to be less than the growth rate, we must impose a constraint on the number 
of particles NP and the orbit averaging parameter N, namely, 

In a resonant instability, particles must remain in phase with the wave for a long 
enough time to exchange energy. In an orbit-averaged code, this criterion means 
phase information must be maintained throughout each macro-time-step. If the 
rotation algorithm had no phase error, then 8, the rotation angle for v x B motion 
in a micro-time-step, would be exactly 52, dt. At the conclusion of a macro-time- 
step, the difference between Gi AT and N8 must be compared with r AT to deter- 
mine whether the resonance condition is significantly shifted. In the limit sZi At B 0 
we have 

where r is the growth rate of the instability. The corresponding error in (j ) and 
(Q) is given by the difference between P(sZ, At) and P(0) determined in 
Eqs. (14b, 20). We have 

(20) 

5. SIMULATIONS 

As a prelude to our study of the full shock-acceleration problem, we have 
simulated the time evolution of a resonantly unstable distribution of fast, but non- 
relativistic particles for which a growth rate can be calculated analytically. This 
problem is a simple way to test the accuracy and stability of our code, and so verify 
the noise level in the orbit averaging algorithm. 

As a simple test of the linear behavior of a single unstable mode, we have adop- 
ted a cosmic ray distribution function 

f(P)=$j cm+,-Po)+&P,, +po)l (21) 
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which corresponds to two cold interpenetrating beams. The cosmic ray contribution 
ray-MHD fluid dispersion relation is 

@2 _ kZv2 o&I Vi oy - kv, oy + kvo 

A 2y 2 oy-kv,ff2i+wy+kv,+Sai 
= 0, (22) 

where v. = PO/m and y is the particle Lorentz factor. If we choose computer units 
such that Qi=O.l, apcr= 0.05, v,, = 0.01, k = 1, and c = 1, then r, the imaginary 
part of the frequency, has a Lorentz profile as a function of beam velocity. The plot 
of f/o as a function of vo, shown in Fig. 5, shows that T/w lmax = 7.85 x lo-’ occurs 
at urnax = 0.11, i.e., when the resonance condition 

Re(w)y _+ kv, f 52, = 0 (23) 

is satisfied. A single test run, with 512 particles, an orbit averaging parameter 
N= AT/At = 50, and a beam velocity v. = 0.11, gave a measured growth rate 
T/o = 7.8 x lo-‘, in excellent agreement with the above result. We have repeated 
this run with a slightly different beam velocity, corresponding to T/o = 4.89 x lo-‘, 
and find a measured growth rate of r/o = 5.0 x lo-‘. During runs in which the 
beam energy was low3 of the total system energy, energy was conserved to better 
than lo-‘, while the momentum was conserved to 0.2% relative to the initial 
momentum of a cosmic ray. If we were to repeat these simulations without using 
orbit averaging, we would require 25,000 particles to obtain the same noise level. 
The approximately 5 Cray-1 CPU min/run would then expand to -4 h. This exam- 
ple clearly demonstrates the efficacy of our simulation algorithm in studying the 
supernova remnant acceleration problem. 
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“0 

FIG. 5. The ratio of the imaginary part of w to the real part of o for two cold interpenetrating 
beams with a dense. MHD background. Using the parameters in the text, this example has a maximum 
growth rate when u. = 0.11, i.e., when Re(w)y - kuo + Ri = 0. 
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